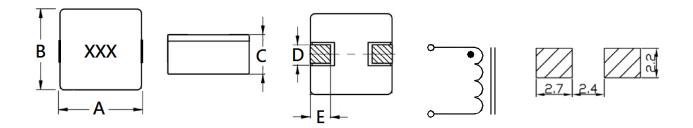
HFMP0733 TYPE

FEATURE


- 1. Shielded construction
- 2. High current and low DCR for flat wire type
- 3. Cross out as Wurth 744310xxx

Applications

1. Notebook, server application, High current power supplier

Shape and Dimension

Schematics and Land Patterns(mm)

 $A = 7.00 \pm 0.40 \, \text{m/m} \; ; \; B = 6.90 \pm 0.40 \, \text{m/m} \; ; \; C = 3.30 \, \text{m/m} \; MAX; \; D = 1.20 \pm 0.30 \, \text{m/m}; \; E = 1.80 \pm 0.50 \, \text{m/m} \; ; \; C = 1.20 \pm 0.30 \, \text{m/m}; \; E = 1.80 \pm 0.50 \, \text{m/m} \; ; \; E = 1.80$

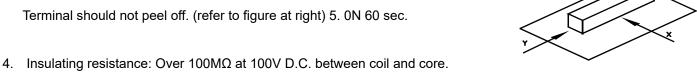
Specification

	L	RDC	RDC	Isat	Irms
P/N	(µH)	(mΩ) Typical	(mΩ) Max	(A)	(A)
HFMP0733-R13M	0.13±20%	0.91	1.00	48	22
HFMP0733-R24M	0.24±20%	1.80	1.98	40	18
HFMP0733-R52M	0.52±20%	3.70	4.07	20	14
HFMP0733-R95M	0.95±20%	6.20	6.82	13	11
HFMP0733-1R15M	1.15±20%	8.60	9.46	13	8.5
HFMP0733-1R5M	1.5±20%	12.70	13.97	12	7.5
HFMP0733-2R0M	2.0±20%	14.20	15.62	9	6.5

Note1. Measurement frequency of Inductance value: at 100KHz

Note2. Measurement ambient temperature of L, DCR and IDC : at $25^{\circ}\!\mathbb{C}$

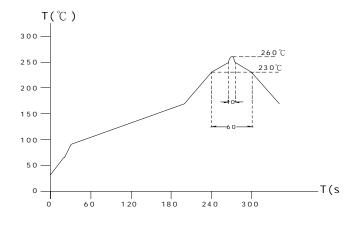
Note3. Isat: DC current at which the inductance drops 30%(typ) from its value without current

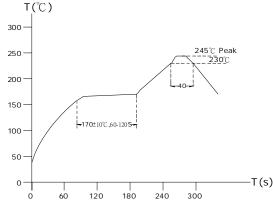

Note4. Irms: Average current for 50°C temperature rise from 25°C ambient(typical)

Note5. Inductance tolerance: M: ±20%

Note6. Packaging: Taping; Quantity: 1000 pieces/reel

GENERAL CHARACTERISTICS


- 1. Operating temperature range: -40 TO + 150°C (Includes temperature when the coil is heated)
- 2. External appearance: On visual inspection, the coil has no external defects.
- Terminal strength: After soldering. Between copper plate and terminals of coil. Push in two directions of X.Ywithstanding at below conditions.



- Dielectric strength: No dielectric breakdown at 100V D.C. for 1 minute between coil and core.
- Temperature characteristics: Inductance coefficient (0~2,000)x10-6/°C (-25~+80°C).
- Humidity characteristics(Moisture Resistance): Inductance deviation within ±5%, after 96 hours in 90~95% relative humidity at 40 ±2°C and 1 hour drying under normal condition.
- 8. Vibration resistance: Inductance deviation within ±5%, after vibration for 1 hour. In each of three orientations at sweep vibration (10~55~10 Hz) with 1.5mm P-P amplitudes.
- 9. Shock resistance: Inductance deviation within ±5%, after being dropped once with 981m/s2 (100G) shock attitude upon a rubber block method shock testing machine, in three different orientations.
- 10. Resistance to Soldering Heat: 260℃, 10 seconds(See attached recommend reflow)
- 11. Storage environment: Storage condition: Temperature Range: 10° C ~ 35° C (Generally: 21° C ~ 31° C) , Humidity Range: 50% ~ 80% RH (Generally: 65% ~ 75%); Transportation condition: Temperature Range: -35°C ~ 85°C , Humidity Range: 50% ~ 95% RH
- 12. Use components within 12 months. If 12 months or more have elapsed, check solderability before use.
- 13. Reflow profile recommend:

Lead-free heat endurance test

Lead-free the recommended reflow condition

